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Abstract 
 
 The Decade Half x-ray radiation simulator will combine 
the outputs of eight synchronized modules to produce a 
current of up to 13 MA delivered to a short circuit load in 
~300 ns.  Decade is located within the Decade Radiation 
Test Facility (DRTF) at the Arnold Engineering 
Development Center, Tullahoma, TN.  Decade's output 
will be used for nuclear weapons effects testing; the 
DRTF will reach initial operational capability (IOC) in 
2007. 
 DoD's X-ray Radiation Simulator R&D Program is 
focused on maximizing 3.1 keV x-ray fluence from 
Decade's argon z-pinch.  Electric current risetime will be 
approximately a factor of 3 longer than typically used to 
drive plasma radiation source (PRS) loads.  Scaling to 
longer current risetime is advantageous in terms of 
reduced driver cost and complexity.  The use of longer 
pulse drivers, however, requires an increase in the initial 
diameter of the z-pinch gas puff.  The unique challenge is 
to extend the success with 100 ns current risetime 
simulators into the realm of the 300 ns current risetime of 
Decade.  As the diameter is increased, increased 
asymmetry and instability can limit the ability of the load 
to produce K-shell radiation efficiently.  These effects 
were largely un-quantified until technical investigations 
were conducted under the auspices of the Simulator R&D 
Program.  This  paper discusses progress, activities and 
issues in developing the large diameter z-pinch for 
Decade. 

 
 
Figure 1. Decade Quad machine presently on the floor at 
the DRTF.  A second "quad" will be added before 2007. 

I. PROGRAMMATICS 
 
 Specific R&D objectives are to demonstrate 1) that over 
120 kJ of argon K-shell radiation will be produced by 
Decade's 13 MA, 300 ns current with a large diameter 
(>10 cm) PRS nozzle, and 2) that unwanted debris and 
ultraviolet radiation from this source can be stopped by a 
debris mitigation system.  Figure 2 lists program areas, 
across the top, program objectives, and capabilities being 
supported.  "CTEIP" is the abbreviation for DoD's Central 
Test and Evaluation Investment Program that ensures 
operability of DoD test facilities.  The Simulator R&D 
Program is attempting to ensure that diagnostics systems 
developed earlier (e.g., see [1]) are implemented on 
demonstration experiments, and that results are integrated 
into analytic tools and computer models. 
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Figure 2. DoD Simulator R&D program areas, objectives 
and capabilities supported 
 
 The program’s recent pulsed power efforts have 
supported development of new, advanced capacitors – 
presentations later in PPC 2003 will discuss achievements 
and plans to use the new capacitors in several 
applications, to include future Decade upgrades.[2,3]  
DoD's Simulator R&D Program also is supporting efforts 
to ensure that a gamma radiation (> 3 MeV) simulator and 
a debris electron simulator to be installed in the DRTF 
will operate properly.  The technical analysis and 
modeling area supports rigorous simulator team efforts to 
apply previously developed skills, analytical tools and 
computer models to these objectives. 
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II. RECENT PROGRESS 
 
 Significant progress has recently been made in high 
current, long implosion time z-pinches in efforts to scale 
up to a large diameter nozzle for Decade.[4]  In 
November 2001, 28 kJ of argon K-shell radiation was 
produced by a 214 ns, 4.7 MA peak current through an 8-
cm diameter nozzle (300 µg/cm line-mass) on Decade 
Quad (see Fig. 3).  In July 2002, over 300 kJ was 
produced by a 117 ns, 14.3 MA current through the same 
8-cm nozzle (800 µg/cm) on the Z-machine at Sandia 
National Laboratories, Albuquerque (SNLA).  In the last 
year, 7-9 kJ was demonstrated with 230-240 ns, 3.5 MA 
currents through 12-cm nozzles (185 µg/cm) on Double-
EAGLE at DTRA’s West Coast Facility.[5]  In addition, 
success in the long implosion time regime has been 
demonstrated on Decade with a high quality pinch 
producing >40 kJ K-shell output from a large diameter, 
aluminum wire array load imploding in >250 ns. 
 

 
 
Figure 3. PRS Nozzle (8-cm) installed on Decade 
produced 28 kJ (3.1 keV) with 214 ns, 4.7 MA peak 
current 
 
 These tests confirm for the first time that, with an 
appropriate radial mass distribution, larger PRS loads can 
be sufficiently stable for significant x-ray production. 
 With regard to energy coupling, scaling of K-shell 
radiation yield with load current has been well established 
for up to 15 MA.[4]  As indicated in Fig. 4, yield changes 
as I4 at lower currents and as I2 above 4MA.  For high 
currents, the K-shell yield appears to be as efficient a 
radiator for large diameter, long implosion time loads as 
small diameter, shorter implosion time loads.[6] 
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Figure 4.  Zero-D scaling predictions for ∼100 (upper 
curve) and 300 ns (lower curve) implosion loads, 
compared with data from past experiments (squares, 
circles) and more recent results from Decade Quad (DQ) 
and large diameter nozzles on Double Eagle (DE).  
Decade Half (DH) will operate at 13 MA (or less) with 
the goal of producing at least  120 kJ (30 kJ/cm × 4 cm). 
 
 The most important issues affecting load design on a 
long pulse machine are directly related to the need to 
deliver as much of the machine energy as possible to a 
load, so that it has enough specific energy to be able to 
radiate efficiently, i.e., in the I2 regime.  The specific 
energy is often expressed in terms of η*, which is a 
measure of the J×B coupled energy per unit mass, relative 
to the energy required to ionize to the K-shell.  The strong 
dependence of K-shell yield on η* has been demonstrated 
experimentally on Decade, Z, and on the Saturn machine 
at SNLA (see Fig. 5).  Note that 0-D models do not 
capture the observed fall-off in K-shell radiation with 
increasing mass and decreasing η*.  Evidently, with 
higher mass the final temperature is limited by losses 
(which scale as M2) requiring greater η* values (increased 
diameter).  The larger, 12-cm nozzle tested on Double-
EAGLE was developed in order to provide favorable η* 
values for Decade loads.[7] 
 For Decade Half parameters and a 16-cm diameter 
nozzle, the goal yield of 120 kJ (30 kJ/cm × 4 cm) could 
be achieved at the 9-MA current level where η* ~ 4.  
Ideally, the yield could increase to 80 kJ/cm at 13 MA, 
but the specific energy would decrease to η*~1 and the 0-
D prediction is probably optimistic for this high mass, 
based on empirical evidence like that in Fig. 5.  The 
diameter would have to be increased to improve the 
prospects for efficient K-shell radiation at the full Decade 
Half current. 
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Figure 5. Experimental values for η* on Z and mass used 
to design larger PRS nozzles 
 
 Radiation output can be increased by increasing the 
efficiency of conversion of magnetic energy to radiation.  
The basic mechanism is magnetic-to-kinetic energy 
conversion, with kinetic energy thermalized at stagnation 
and subsequently converted into radiation.  It has been 
known since the early 1980s that the plasma radiation 
source can radiate more energy than can be converted into 
kinetic energy through the work of the J×B force.[8]  This 
excessive energy has been attributed to some kind of 
anomalous resistivity because classical (Spitzer) 
resistivity is too low to explain the discrepancy.  In 
experiments with aluminum wire arrays on Saturn, the 
total radiated energy sometimes exceeded the magnetic 
energy by a factor of 3.5-4.[9] 
 It is not certain how much of this excess energy can be 
channeled into radiation in the K-shell or continuum in 
the 1-10 keV range.  Theory yields an expression for 
enhanced plasma resistivity which is consistent with its 
first direct measurements made on a low current 
driver.[10]  That is, some portion of the ½ LI2 energy can 
contribute to further heating during the lifetime of the 
pinch.  Applying scaling for Decade conditions, consider 
R(Ohms) = ½ Imax(MA) l(cm) m-1/2(cm/µg) rf

-1(mm-1) = 
(½× 13 × 4)/(30 x 1) =  ~ 1 Ohm, and, L (nH) = 2 × l(cm) 
ln (ro/rf) ~ 10 nH.  Then, τheat ~ 10 ns, which is 
approximately the pinch duration, and indicates that 
energy may be increased beyond that available from 
kinetic energy of the implosion. The resistance could be 
sufficiently high to make L/R time associated with 
inductance-to-resistance energy transfer comparable with 
pinch lifetime. 
 
 

III. PROGRAM PLAN 
 
 A number of additional factors need to be investigated 
before a successful full scale load can be delivered for use 
on Decade.  Program participants are poised to begin the 
next campaign to demonstrate this nozzle.  Efforts to 
scale-up to the larger nozzle are being conducted jointly 
by the Naval Research Laboratory (NRL), Alameda 
Applied Sciences Corporation and Titan Pulse Sciences 
Division.  Other contractors and SNLA also support the 
effort, e.g., to supply various components, analysis, 
modeling and diagnostics.  Several PRS working group 
meetings have been held over the last year; and, Dr. John 
Apruzese of the NRL is currently serving as the team 
chair/program area reviewer. Recently our Plasma 
Radiation Source (PRS) working group met and identified 
four key physics issues that need to be resolved before an 
optimum nozzle and load can be designed and 
implemented on Decade. These issues are: 
(1) What are the optimum mass ratios for the shells (and a 
central gas jet) to optimize K-shell yield?  What physics is 
involved in optimizing these ratios? 
(2) How much yield comes from the various shells (and 
central jet) and what, if any, is the role of intershell 
mixing? 
(3) What is the fate and the role of the "dark matter" in the 
implosion, that is, the mass which does not radiate K-shell 
photons? 
(4) Can the use of a low-atomic-number gas in the outer 
shell, which would not lose much energy through soft x-
ray cooling, improve K-shell yield from the inner shells 
(and a central jet)? 
 The approach used by the team is to attempt to 
improve all three phases of PRS operation – initial, 
magneto-hydrodynamic, and the final or x-ray production 
phase.  Delivery of the prototype nozzle is planned in 
2006. 
 Initial Phase - The initial phase includes the 
introduction of argon gas into the pinch region (over 100s 
of microseconds), introduction of very short wavelength 
vacuum spark ultraviolet light from flashboards (20-50 
nm) to preionize the gas, introduction of the main current 
pulse into the gas and, the beginning of the pinch process.  
Neutral gas density in this phase is a few times 1016/cm3 
(varies with nozzle pressure).  Preionization with UV light 
from a flashboard seems to improve shot consistency.[11]  
Symmetry with which UV light irradiates and ionizes the 
argon gas is an issue being investigated.  Timing to 
initiate the main current pulse is typically adjusted to 
occur within a couple of microseconds after the 
flashboard is pulsed, so that pinch/x-ray production is 
completed before a significant amount of flashboard 
debris (velocity ~ 20 cm/µs) intercepts the pinch region.  
Flashboard UV intensity is able to ionize a few (1-10%) 
percent of the argon (current follows a damped, 5 
microsecond period sinusoid). Uniformity appears to be 
important.[12]  The degree of uniformity, however, is 
known to vary with time.  Condensation of the gas into 
extremely small droplets due to its low temperature as it 
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exits the nozzle may be a concern.  More experiments will 
be needed to optimize mass distribution in scaling up to a 
larger nozzle. 
 Magneto-hydrodynamic Phase - During the magneto-
hydrodynamic phase, the plasma moves toward the center 
of the pinch region in response to the main current, which 
at this time is increasing to its peak value.  Symmetry and 
stability of the inward moving plasma are crucial and are 
influenced by tailoring of the argon mass distribution in 
the initial phase.  Rayleigh-Taylor instability may be 
reduced when the current sheath accumulates mass 
("snowplow" stabilization) as it moves inward. 
 X-ray Production Phase - Understanding of radiation 
transport during the final, x-ray production phase is of 
great importance in efforts to determine methods to 
increase yield of plasma radiation sources.[13]  This 
phase lasts some tens of nanoseconds. 
 If argon K-shell yield from larger nozzles is not 
sufficient at 300-ns implosion times, alternatives will be 
investigated to shorten the current risetime.  On Decade, 
this could be accomplished in a number of ways: 
modifying the pulsed power by additional capacitors 
(probably too expensive), using a plasma opening switch 
(POS), or using a different pulse compression technique 
(e.g., flux compression or current multiplier).  A version 
of the POS technique is probably the best near-term 
choice because it has already been used to produce 
efficient coupling to PRS loads.[14] 
 
 

IV. DIAGNOSTICS 
 
 Diagnostics for gas-puff PRS loads have recently 
improved considerably.  Sets of x-ray detectors can be 
used to view different radial regions of the pinch to 
determine pinch diameter (time-dependent, axially-
averaged).  Two-dimensional shearing interferometry has 
enabled the shape of the advancing front during the 
implosion to be determined. 
 Spatially resolved electron densities, ion densities and 
ion temperatures can be determined in the pinched plasma 
with a space and time resolved Johann spectrometer.  
Holographic interferometry is also used to measure the 2-
D electron density distribution.  Magnetic field 
distribution during magneto-hydrodynamic and final 
phases of the pinch can be determined with Zeeman 
spectroscopy and bi-refringent interferometry. 
 The use of dopant ions in the argon has been very 
beneficial in studying plasma properties in a pinch near 
and at stagnation.[15]  This will be discussed in another 
paper.[16]  Gas doping provides reliable optically thin 
spectral lines.  Ion velocities at the final phase of the 
implosion can be determined. Electron temperature, 
charge state distribution, ion velocities and magnetic field 
distribution can be investigated from the UV 
radiation.[17] 
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